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Nonextensivity of the cyclic lattice Lotka-Volterra model
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We numerically show that the lattice Lotka-Volterra model, when realized on a square lattice support,
gives rise to afinite production, per unit time, of the nonextensive entroSy:(l—Eipf‘)/(q—l)
(Sy=—2,;p; In p)). This finiteness only occurs far= 0.5 for thed=2 growth modggrowing droplet, and for
g=0 for thed=1 one(growing stripg. This strong evidence of nonextensivity is consistent with the sponta-
neous emergence of local domains of identical particles with fractal boundaries and competing interactions.
Such direct evidence is, to our knowledge, exhibited for the first time for a many-body system which, at the
mean field level, is conservative.
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[. INTRODUCTION biological processes involving a large number of degrees of
freedom[13,14], among others.
Many natural and artificial systems are known today to The original Lotka-Volterra(LV) model was first intro-
be hardly, or not at all, tractable within Boltzmann-Gibbs duced in population dynamics to study predator-prey systems
statistical mechanics, hence the usual thermodynamics. Su¢h5-17. Many variants of this model followed with appli-
is the case of systems which include long-range interactionsations in diverse fields, such as ecology, sociology,
or long-range microscopidor mesoscopic memory, or economy, and chemistry. While the original LV model was
other sources ofmulti)fractality. Phenomena where many introduced as a mean-fie{tIF) scheme, the variants include
spatial and/or temporal scales are involved typically exhibiflattice gas[18—21], reaction-diffusion[22], and stochastic
power laws. The celebrated Boltzmann-Gi{B&) entropy  models [23,24]. The lattice Lotka-Volterra(LLV) model
Ssc=—2ip; Inp; appears to be inadequate for handling the[25,26 with cyclic interactions amongst a number of species
thermostatistics associated with such situations. This is dukas been studied as a modification to the original LV model
to the fact that the corresponding stationary statesdio  at the MF level. Implementations of the LLV model on one-
emerge through ergodic dynamics. An ubiquitous class of thdimensional1D) lattice with variable number of species has
above anomalous systems has nonlinear dynamics whiomanifested distinct non-MF behavif26]. On higher dimen-
generateweakchaos, in the sense that the sensitivity to thesions the LLV has exhibited stationary pattef@3,28, spa-
initial conditions is less than exponential in time. Such situ-tial clustering[25], fractality[29], and dynamical pattern for-
ations quite naturally accommodate with an entropy whichmation[30].
generalizes the BG one, namely, Since fractality often accompanies nonextensivity, it is
natural to pose the question whether the LLV model is in-
deed consistent with the nonextensive premises. The aim of
1_2 pd the present paper is to verify that this model can be charac-
i terized within the extended thermostatistics Witk 1. In
Sq:q_—l(q e R;S;=Sgo)- 1) particular we study the LLV model with various initial con-
ditions, namely, ata) the domain formation modeb) the
nucleus (or drople} growth mode,(c) the stripe growth
For independent system& and B (i.e., such thatpj; mode, andd) the roughening mode. Modéb) and(c) en-
=piA ij), this entropy satisfieSy(A+B)=S;(A) + Sy(B) able, as we shall see, the direct calculationgofSeveral
+(1-0)Sq(A)Sy(B). It is due to this property of nonexten- analytical or numerical calculations gfexist already in the
sivity that the thermostatistical formalism based on @gis  literature, but this is the first time, to our knowledge, such
usually referred to as nonextensive statistical mechdgdics €vidence is directly provided, through the time evolution of
(see Ref[2] for recent reviews This theory has received S itself, on a many-body system which is conservative at
many applications in areas such as self-gravitating polythe MF level.
tropes[3], electron-positron annihilatiof#], turbulence 5],
motion of Hydra viridissima[6], anomalous diffusion7,8],
classical9] and quantunj10] chaos, long-range-interacting
many-body Hamiltoniangl1], option pricing[12], particular

A+B

Il. THE LATTICE LOTKA-VOLTERRA MODEL
ON SQUARE LATTICE

The LLV model is a minimal complexity model, with MF
conservative dynamics which can be directly implemented
*Electronic address: aprovata@limnos.chem.demokritos.gr on lattice and involves only two reactive specksand X,
"Electronic address: tsallis@cbpf.br (adsorbed on a lattice supppdnd the empty sites of the
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FIG. 1. (8 The mean-field approximation concentratiorgt) and x,(t) for (x;(0),x,(0),s(0))=(0.5,0.4,0.1) and K;,k;,k)
=(0.9,0.3,0.1) .(b) Monte Carlo simulations; the soli@lotted line corresponds ta;(t) over the full lattice(sublatticg.

supportS. All reactive steps are bimolecular and the reactionwherex,, x,, ands correspond to the mean coverage of the
occurs via hard core interactions. Schematically, the LLVlattice with particlesX;, X, and empty site§, respectively.

model has the following forni25]:

kS
Xl+ X2 — 2X2,

ky
X2+S — 28,

ko
StX, —  2Xy.

In Egs. (3), the mean coverages satisfy identically the con-
servation conditionx; +x,+s=C, where C is a constant

(2a) which can be chosen equal to unity, corresponding to inter-
preting Xy, X,, ands as fractions of the overall lattice, re-
spectively, occupied by, particles,X, particles, or being

(2b) empty. UsingC=1 it is possible to eliminate one of the three
variables, sag=1—Xx;—X,, and to reduce syste(B) to two

(20 equations. This reduced system admits four steady state so-
lutions, three of which are trivial and one nontrivid5];

In particular, a particleX, adsorbed on a lattice site namely, withK =k, +k,+ ks,
changes its state int§, when it is found in the neighbor-

hood of anothekK, particle. The steff2a) is an autocatalytic X1s=0, X,s=0 (empty lattice, (48
reactive step. A particlX, desorbs leaving an empty sig
if in the neighborhood another empty sifis found. The x1s=1, X,s=0 (lattice poisoned byX;), (4b)

step(2b) is a cooperative desorption step. Finally, a particle

X, can be adsorbed on an empty lattice §iiéin the neigh-
borhood anotheK; particle is found. The steff¢) is a co-

X1s=0, Xos=1 (lattice poisoned byXs,), (40

operative adsorption step. In a predator-prey system species

X1 may represent the prey, speciés represents the preda-

1s= K1 /K, Xp5=k,/K (nontrivial state¢.  (4d)

tor, while S represents empty space which can be occupied

by either predator or prey during the evolution.

A linear stability analysis shows that the trivial states are

We now recall briefly some of the mean-field and lattice Saddle points while the nontrivial one is a center compatible
properties of the LLV, which have been studied in detail inwith an additional constant of motio’ =x:1xs%(1—x,

previous workg?25,29.

—X,)%s [31,37 at the MF level. Figure (b) deplcts the tem-

In the MF approximation the LLV model, Eqggl), can be  poral evolution of the system for typical values &f (k5 ,ks)

described via the kinetic rate equations:

dxq
ar X1(—KkgXo+K;zS),
dx,
rTa Xa(ksX1—K1S),
ds

T S(—koXp+KkiXp),

and initial conditions. The black solid line represents the
concentration o, and the dashed line the concentration of
X,. The motion is periodic but nonharmonic. The amplitude
(38 of the periodic motion, for given parameter values, depends
solely on the initial condition$25,29. At this level of de-
scription the system size does not enter into the calculations
(3b) since the MF approximation involves only average concen-
trations.
To mesoscopically describe the system on a lattice, many
(30 def[ails enter: Ia’gtice_ size and geometry, number of nearest
neighbors(coordination numbey interaction range, etc. To
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FIG. 2. (a) Four different snapshots during the evolution of LLV for random uniform initial conditiosms, p;=(1/L)?, henceS,(t
=0)=[(L/1)?@~9—-1]/(1—q), wherel is the size of the nonoverlapping windowen aL =500 square lattice at the “domain formation
mode”; (kq,k,,ks)=(0.9,0.3,0.1).(b) Four different snapshots during the evolution of LLV starting from initial conditions containing
stripes of identical particles at the “roughening modek; (k,,k)=(1.0,1.0,1.0).

realize the square lattice LLV we adopt a typical Kinetic with specific characteristic frequency. Because the various
Monte Carlo (KMC) algorithm (details in Refs.[25,29), domains have different phases, globally, no oscillations are
which is as follows. observed, in contrast with the MF predictio[®5]. More-

(1) At every microscopic step one lattice site is randomlyoVver, it has been showi29] that the different species orga-
chosen. nize in local domains which present competing interactions

(2) One of the nearest neighbors is also selected rar@nd have fractal boundaries. In this figure and hereafter the
domly. X particles are depicted in greggray) color, theX; in red

(3) If the original chosen site iX; (X5) and the selected (black), and the empty sites in white. The fractal properties
neighbor isX, (S) then the chosen site changesXg () of the spat|allstructures can be.used to measure the size of
with probability ky(k,): if the original chosen site i§ and the local oscillatord29] and point out to a nonextensive

. : formalism for the calculation of its entropy. Similarly, in Fig.
';?e s_terllectel(gj gﬁ!?hkb(_)r ﬁ}l thgn ttt:]e chotsen site qhange_:i to 2(b) we present the dynamical evolution of the LLV system
1 With probability Xz, Otherwise the system remains as itis. o¢ e “roughening mode,” where initially a flat interface
(4) Return to stegl).

. L separates two stripes of identical particles. The setup of the
In the KMC procedure the unit of time is chosen a1/ gystem at the initial state contains one stripe of Szel.
whereN is the total number of lattice site@ccupied and 5oy 500 consisting only ofX, particles followed by a

empty. For example, for square lattichl= L?, whereL is  stripe of the same size but consisting onlyXf particles,
the linear size of the lattice. With this choice of mICI’OtIme, N while the rest of the lattice is covered Q/See F|g B)) at
one Monte Carlo stepMCS) all lattice sites are, on an av- t=0. As time increases, the originally flat interfaces roughen
erage, scanned once. In Fig(bl typical behavior of the and the stripes are deformed. The process is dynamical and
temporal evolution of the KMC concentrations is shown. Inall interfaces move to the right with the same average veloc-
particular, the concentrations of; is depicted on the full ity. In Fig. 2(b) while the size of the stripes is on the average
lattice of sizeL X L =28x 28 (solid line) and on a sublattice kept constant, fluctuations make their shape vary signifi-
of sizel x1=2%x2° (dotted ling. Periodic boundary condi- cantly. In fact, after sufficiently long timeglepending on the
tions are used in all simulations. It is clear that while on thewidth Sand the size of the stripegthe stripes will mix and
sublattice the concentrations show oscillatory behavior witithe typical fractal patterns of Fig(@ will reappear. These
added noise, on the entire lattice the oscillations shrink.  two examples and the ones which will be presented in the
Figures 2a) and 2b) show typical evolutions of the LLV s_eque_l demonstrate th_e rich complex LLV structures which
system starting from different initial conditiori§igs. 2a)  9iVe rise to nonextensive entropy production.
and 2b) att=0]. In Fig. 2a) initially the system is a homo-
geneous lattice with equal concentrationsxef X, particles
and empty sitesS. As time increases the system develops To describe the temporal evolution of the entropy with
local domains and each domain behaves as a local oscillatoespect to one of the species, eX, we start from a given

Ill. ENTROPY CALCULATIONS
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FIG. 3. (a) Four different snapshots during the evolution of a system covered initiall$ with one small mixed droplet. The system
linear size is. =500 while the droplet size Is=8; (ky,kz,ks) =(1.0,1.0,1.0)(b) Sy(t). (c) Sy &(t) for various lattice sizegd) Collapse of
the (c) data.

configuration, with specific initial conditions on lattice and Let us denote withp; the probability that window is occu-
let the system evolve according to the KMC algorithm. Thepied by particlesX;. If n,(i,t) is the number of particleX;
choice of the particular species does not play any role innside windowi at timet andny(t) is the total number oX;
the entropy calculations, since the model is cyclic and alparticles on the lattice, then

the species are equivalent. As time increases the system
passes through various configurations which we record at
regular temporal intervals. Let us cal(t)={C;;(t)}, i
=1,...L;j=1,... L the specific configuration of the lat-
tice at timet, while C;;(t) denotes the state of site,|) at
time t; namely,

pi(t)=ny(i,1)/ny (). (6)

This probability set into Eq(1) provides Sy(t), the time
dependent Eq(l),

1 if site (i,j) is occupied byX; M
C;={ —1 ifsite(i,j) is occupied byX, 1—21 pd(t) y
0 if site (i,j) is occupied byS. Sy(t)= e S (t)= _Z‘l p.(DINpi(D). (7)

Within each configuration we introduce a setMfnon-
overlapping windowgW;} (i=1, ... M) of sizel X| which
cover completely the lattice. The number of windowsMs

=n?=(L/1)2. Consequently

M

i=1

(5

For short timesS,(t) scales as a nonlinear function of the
time, while for large times depends nonlinearly on the sys-
tem size. This nonlinear dependence on the system size is the
basic indication of nonextensivity. The various valuesgof
highlight characteristics on different length scales in the sys-
tem. As an example, rare events are characterized by low
values ofp;. For q<1, the termp{ takes relatively large
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FIG. 4. (a) Four snapshots of the LLV model at the “stripe growth” modé&; (,,ks) =(1.0,1.0,1.0).(b) S,(t). (c) Sy(t) for 500L
lattices.(d) Collapse of thgc) data.

values and gives important contribution to the functign on the degree of organization of the initial state, the entropy
In contrast, ifg>1, thenp<p; and the contribution of rare may increase going to a more disordered state or decrease
events is negligible. going to a more ordered state.

It is well known that scaling behavior is proper to systems To calculate the entropy production rate at the “nucleus
which present fractality. Especially in monofractals only onegrowth mode,” we start with a fully organized state consist-
level of scaling is detected while in multifractal structuresing only of particlesSand we include a nucleation droplet of
the different scales grow with different power laws. The infinitesimal radiug placed on the lattice. The droplet con-
entropy is then the appropriate measure of complexity betains particlesX;, X,, andS homogeneously and randomly
cause it addresses the complexity in different length scaledistributed within the droplet area. As time increases the
by appropriate tuning of thg value. droplet grows forming spontaneously several rings of par-
ticles X;, X,, and S sequentially[30]. The widths of the
rings shrink with the distance from the pugregion and
when their width becomes zero the typical LLV fractal pat-

In the current study we explore the behaviorSyfon the  tern appears in the middle as can be seen in Rig. Jhis
LLV starting with different initial configurations. Depending type of spreading is called the “nucleus growth mode” be-

IV. RESULTS: THE q VALUES OF ENTROPY
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cause an initially small droplet grows in size and finally cov-growth mode but now onlg=0 produces the linear behav-
ers the entire system. This two-dimensiond=2) growth ior [Fig. 4b)], henceq depends oml. Figure 4c) shows the
leads to a reorganization of the species which at the begirdependence d§, on the lattice sizé., while the correspond-
ning were randomly distributed within the infinitesimal drop- ing data collapse is presented in Figdy
let, while they eventually present fractal patterns as in Fig.
2(a). As time increases this typical pattern will cover the
entire lattice. V. CONCLUSIONS
incfsazgevr\]/i{ﬂ I;L%eaguﬁgéy ttr?: gﬁfri]pg/ob?ozr;%ggnmgsgtion' In the current study the no_nextensive entr.opic properties
behavior is sublinear foq>0.5 and superlinear faq<<0.5 of Fhe LLV model are exgmmed. The special value cof
In Fig. 0) we seeS, s for vérious Svstem sizes Thé -aII which produces a linear increase 8f(t) depends on the

9- D05 y . Y dimensionalityd of the growth:q=1—-1/d (d=1,2). These
start linearly, coincide during the entropy production period

and saturate at different values. T@alue does not change ‘nontrivial values ofq might be consistent with the appear-
. - ) > , . 9€ ance of fractal spatial structures observed in earlier studies
with variations of the lattice sizk, of the window sizd, of

the initial concentrations of reactants within the original for the same system; however, further studies are neverthe-

droplet, and of the values of the kinetic Constantslfss_necessary t_o _cIear out this pomt._ Also, one e_x_pgcts
I . ~=1 in thed— limit [33]. Further studiege.g., sensitivity
(kq, ks, k3), unless the constant values or initial states drive, S " . )
o . to the initial conditions, multifractal functiof(«), entropy
the system to trivial states. If we inspect closely the relaxation, and agingare welcome
=500 steady state of Fig(l®, the entropy lines fot>150 ' ginga '
present small fluctuations. An interesting data collapse is
shown in Fig. &d).
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