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Nonextensivity of the cyclic lattice Lotka-Volterra model
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We numerically show that the lattice Lotka-Volterra model, when realized on a square lattice support,
gives rise to afinite production, per unit time, of the nonextensive entropySq5(12( i pi

q)/(q21)
(S152( i pi ln pi). This finiteness only occurs forq50.5 for thed52 growth mode~growing droplet!, and for
q50 for thed51 one~growing stripe!. This strong evidence of nonextensivity is consistent with the sponta-
neous emergence of local domains of identical particles with fractal boundaries and competing interactions.
Such direct evidence is, to our knowledge, exhibited for the first time for a many-body system which, at the
mean field level, is conservative.
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I. INTRODUCTION

Many natural and artificial systems are known today
be hardly, or not at all, tractable within Boltzmann-Gib
statistical mechanics, hence the usual thermodynamics. S
is the case of systems which include long-range interact
or long-range microscopic~or mesoscopic! memory, or
other sources of~multi!fractality. Phenomena where man
spatial and/or temporal scales are involved typically exh
power laws. The celebrated Boltzmann-Gibbs~BG! entropy
SBG52( i pi ln pi appears to be inadequate for handling t
thermostatistics associated with such situations. This is
to the fact that the corresponding stationary states donot
emerge through ergodic dynamics. An ubiquitous class of
above anomalous systems has nonlinear dynamics w
generateweakchaos, in the sense that the sensitivity to t
initial conditions is less than exponential in time. Such si
ations quite naturally accommodate with an entropy wh
generalizes the BG one, namely,

Sq5

12(
i

pi
q

q21
~qPR;S15SBG!. ~1!

For independent systemsA and B ~i.e., such thatpi j
A1B

5pi
A pj

B), this entropy satisfiesSq(A1B)5Sq(A)1Sq(B)
1(12q)Sq(A)Sq(B). It is due to this property of nonexten
sivity that the thermostatistical formalism based on Eq.~1! is
usually referred to as nonextensive statistical mechanics@1#
~see Ref.@2# for recent reviews!. This theory has received
many applications in areas such as self-gravitating po
tropes@3#, electron-positron annihilation@4#, turbulence@5#,
motion of Hydra viridissima@6#, anomalous diffusion@7,8#,
classical@9# and quantum@10# chaos, long-range-interactin
many-body Hamiltonians@11#, option pricing@12#, particular

*Electronic address: aprovata@limnos.chem.demokritos.gr
†Electronic address: tsallis@cbpf.br
1063-651X/2004/69~1!/016120~7!/$22.50 69 0161
ch
s

it

ue

e
ch
e
-
h

-

biological processes involving a large number of degrees
freedom@13,14#, among others.

The original Lotka-Volterra~LV ! model was first intro-
duced in population dynamics to study predator-prey syste
@15–17#. Many variants of this model followed with appli
cations in diverse fields, such as ecology, sociolo
economy, and chemistry. While the original LV model w
introduced as a mean-field~MF! scheme, the variants includ
lattice gas@18–21#, reaction-diffusion@22#, and stochastic
models @23,24#. The lattice Lotka-Volterra~LLV ! model
@25,26# with cyclic interactions amongst a number of spec
has been studied as a modification to the original LV mo
at the MF level. Implementations of the LLV model on on
dimensional~1D! lattice with variable number of species ha
manifested distinct non-MF behavior@26#. On higher dimen-
sions the LLV has exhibited stationary patterns@27,28#, spa-
tial clustering@25#, fractality @29#, and dynamical pattern for
mation @30#.

Since fractality often accompanies nonextensivity, it
natural to pose the question whether the LLV model is
deed consistent with the nonextensive premises. The aim
the present paper is to verify that this model can be cha
terized within the extended thermostatistics withqÞ1. In
particular we study the LLV model with various initial con
ditions, namely, at~a! the domain formation mode,~b! the
nucleus ~or droplet! growth mode,~c! the stripe growth
mode, and~d! the roughening mode. Modes~b! and ~c! en-
able, as we shall see, the direct calculation ofq. Several
analytical or numerical calculations ofq exist already in the
literature, but this is the first time, to our knowledge, su
evidence is directly provided, through the time evolution
Sq itself, on a many-body system which is conservative
the MF level.

II. THE LATTICE LOTKA-VOLTERRA MODEL
ON SQUARE LATTICE

The LLV model is a minimal complexity model, with MF
conservative dynamics which can be directly implemen
on lattice and involves only two reactive speciesX1 andX2
~adsorbed on a lattice support! and the empty sites of the
©2004 The American Physical Society20-1
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FIG. 1. ~a! The mean-field approximation concentrationsx1(t) and x2(t) for „x1(0),x2(0),s(0)…5(0.5,0.4,0.1) and (k1 ,k2 ,ks)
5(0.9,0.3,0.1).~b! Monte Carlo simulations; the solid~dotted! line corresponds tox1(t) over the full lattice~sublattice!.
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supportS. All reactive steps are bimolecular and the react
occurs via hard core interactions. Schematically, the L
model has the following form@25#:

X11X2 →
ks

2X2 , ~2a!

X21S →
k1

2S, ~2b!

S1X1 →
k2

2X1 . ~2c!

In particular, a particleX1 adsorbed on a lattice sit
changes its state intoX2 when it is found in the neighbor
hood of anotherX2 particle. The step~2a! is an autocatalytic
reactive step. A particleX2 desorbs leaving an empty siteS,
if in the neighborhood another empty siteS is found. The
step~2b! is a cooperative desorption step. Finally, a parti
X1 can be adsorbed on an empty lattice siteS if in the neigh-
borhood anotherX1 particle is found. The step~2c! is a co-
operative adsorption step. In a predator-prey system spe
X1 may represent the prey, speciesX2 represents the preda
tor, while S represents empty space which can be occup
by either predator or prey during the evolution.

We now recall briefly some of the mean-field and latti
properties of the LLV, which have been studied in detail
previous works@25,29#.

In the MF approximation the LLV model, Eqs.~1!, can be
described via the kinetic rate equations:

dx1

dt
5x1~2ksx21k2s!, ~3a!

dx2

dt
5x2~ksx12k1s!, ~3b!

ds

dt
5s~2k2x11k1x2!, ~3c!
01612
n
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wherex1 , x2, ands correspond to the mean coverage of t
lattice with particlesX1 , X2 and empty sitesS, respectively.
In Eqs. ~3!, the mean coverages satisfy identically the co
servation conditionx11x21s5C, where C is a constant
which can be chosen equal to unity, corresponding to in
preting x1 , x2, and s as fractions of the overall lattice, re
spectively, occupied byX1 particles,X2 particles, or being
empty. UsingC51 it is possible to eliminate one of the thre
variables, says512x12x2, and to reduce system~3! to two
equations. This reduced system admits four steady state
lutions, three of which are trivial and one nontrivial@25#;
namely, withK5k11k21k3,

x1s50, x2s50 ~empty lattice!, ~4a!

x1s51, x2s50 ~ lattice poisoned byX1!, ~4b!

x1s50, x2s51 ~ lattice poisoned byX2!, ~4c!

x1s5k1 /K, x2s5k2 /K ~nontrivial state!. ~4d!

A linear stability analysis shows that the trivial states a
saddle points while the nontrivial one is a center compati
with an additional constant of motionC85x1

k1x2
k2(12x1

2x2)ks @31,32# at the MF level. Figure 1~a! depicts the tem-
poral evolution of the system for typical values of (k1 ,k2 ,ks)
and initial conditions. The black solid line represents t
concentration ofX1 and the dashed line the concentration
X2. The motion is periodic but nonharmonic. The amplitu
of the periodic motion, for given parameter values, depe
solely on the initial conditions@25,29#. At this level of de-
scription the system size does not enter into the calculat
since the MF approximation involves only average conc
trations.

To mesoscopically describe the system on a lattice, m
details enter: lattice size and geometry, number of nea
neighbors~coordination number!, interaction range, etc. To
0-2
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FIG. 2. ~a! Four different snapshots during the evolution of LLV for random uniform initial conditions„i.e., pi5( l /L)2, henceSq(t
50)5@(L/ l )2(12q)21#/(12q), wherel is the size of the nonoverlapping windows… on aL5500 square lattice at the ‘‘domain formatio
mode’’; (k1 ,k2 ,ks)5(0.9,0.3,0.1).~b! Four different snapshots during the evolution of LLV starting from initial conditions contain
stripes of identical particles at the ‘‘roughening mode’’; (k1 ,k2 ,ks)5(1.0,1.0,1.0).
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realize the square lattice LLV we adopt a typical Kine
Monte Carlo ~KMC! algorithm ~details in Refs.@25,29#!,
which is as follows.

~1! At every microscopic step one lattice site is random
chosen.

~2! One of the nearest neighbors is also selected
domly.

~3! If the original chosen site isX1 (X2) and the selected
neighbor isX2 (S) then the chosen site changes toX2 (S)
with probability ks(k1); if the original chosen site isS and
the selected neighbor isX1 then the chosen site changes
X1 with probabilityk2; otherwise the system remains as it

~4! Return to step~1!.
In the KMC procedure the unit of time is chosen as 1/N,

where N is the total number of lattice sites~occupied and
empty!. For example, for square lattice,N5L2, whereL is
the linear size of the lattice. With this choice of microtime,
one Monte Carlo step~MCS! all lattice sites are, on an av
erage, scanned once. In Fig. 1~b! typical behavior of the
temporal evolution of the KMC concentrations is shown.
particular, the concentrations ofX1 is depicted on the full
lattice of sizeL3L528328 ~solid line! and on a sublattice
of size l 3 l 525325 ~dotted line!. Periodic boundary condi
tions are used in all simulations. It is clear that while on t
sublattice the concentrations show oscillatory behavior w
added noise, on the entire lattice the oscillations shrink.

Figures 2~a! and 2~b! show typical evolutions of the LLV
system starting from different initial conditions@Figs. 2~a!
and 2~b! at t50]. In Fig. 2~a! initially the system is a homo
geneous lattice with equal concentrations ofX1 ,X2 particles
and empty sitesS. As time increases the system develo
local domains and each domain behaves as a local oscil
01612
n-

.

e
h

s
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with specific characteristic frequency. Because the vari
domains have different phases, globally, no oscillations
observed, in contrast with the MF predictions@25#. More-
over, it has been shown@29# that the different species orga
nize in local domains which present competing interactio
and have fractal boundaries. In this figure and hereafter
X1 particles are depicted in green~gray! color, theX2 in red
~black!, and the empty sites in white. The fractal propert
of the spatial structures can be used to measure the siz
the local oscillators@29# and point out to a nonextensiv
formalism for the calculation of its entropy. Similarly, in Fig
2~b! we present the dynamical evolution of the LLV syste
at the ‘‘roughening mode,’’ where initially a flat interfac
separates two stripes of identical particles. The setup of
system at the initial state contains one stripe of sizeS3L
5503500 consisting only ofX1 particles followed by a
stripe of the same size but consisting only ofX2 particles,
while the rest of the lattice is covered byS, see Fig. 2~b! at
t50. As time increases, the originally flat interfaces rough
and the stripes are deformed. The process is dynamical
all interfaces move to the right with the same average ve
ity. In Fig. 2~b! while the size of the stripes is on the avera
kept constant, fluctuations make their shape vary sign
cantly. In fact, after sufficiently long times~depending on the
width Sand the sizeL of the stripes! the stripes will mix and
the typical fractal patterns of Fig. 2~a! will reappear. These
two examples and the ones which will be presented in
sequel demonstrate the rich complex LLV structures wh
give rise to nonextensive entropy production.

III. ENTROPY CALCULATIONS

To describe the temporal evolution of the entropy w
respect to one of the species, e.g.,X1, we start from a given
0-3
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FIG. 3. ~a! Four different snapshots during the evolution of a system covered initially byS with one small mixed droplet. The system
linear size isL5500 while the droplet size isl 58; (k1 ,k2 ,ks)5(1.0,1.0,1.0).~b! Sq(t). ~c! S0.5(t) for various lattice sizes.~d! Collapse of
the ~c! data.
d
he

i
a
te

-

e
ys-
s the
f
ys-
low
configuration, with specific initial conditions on lattice an
let the system evolve according to the KMC algorithm. T
choice of the particular species does not play any role
the entropy calculations, since the model is cyclic and
the species are equivalent. As time increases the sys
passes through various configurations which we record
regular temporal intervals. Let us callC(t)5$Ci j (t)%, i
51, . . . ,L; j 51, . . . ,L the specific configuration of the lat
tice at timet, while Ci j (t) denotes the state of site (i , j ) at
time t; namely,

Ci j 5H 1 if site ~ i , j ! is occupied byX1

21 if site ~ i , j ! is occupied byX2

0 if site ~ i , j ! is occupied byS.

Within each configuration we introduce a set ofM non-
overlapping windows$Wi% ( i 51, . . . ,M ) of sizel 3 l which
cover completely the lattice. The number of windows isM
5n25(L/ l )2. Consequently

C~ t !5 ø
i 51

M

Wi . ~5!
01612
n
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Let us denote withpi the probability that windowi is occu-
pied by particlesX1. If n1( i ,t) is the number of particlesX1
inside windowi at timet andn1(t) is the total number ofX1
particles on the lattice, then

pi~ t !5n1~ i ,t !/n1~ t !. ~6!

This probability set into Eq.~1! provides Sq(t), the time
dependent Eq.~1!,

Sq~ t !5

12(
i 51

M

pi
q~ t !

q21
, S1~ t !52(

i 51

M

pi~ t !ln pi~ t !. ~7!

For short timesSq(t) scales as a nonlinear function of th
time, while for large times depends nonlinearly on the s
tem size. This nonlinear dependence on the system size i
basic indication of nonextensivity. The various values oq
highlight characteristics on different length scales in the s
tem. As an example, rare events are characterized by
values ofpi . For q,1, the termpi

q takes relatively large
0-4
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FIG. 4. ~a! Four snapshots of the LLV model at the ‘‘stripe growth’’ mode; (k1 ,k2 ,ks) 5(1.0,1.0,1.0).~b! Sq(t). ~c! S0(t) for 500L
lattices.~d! Collapse of the~c! data.
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values and gives important contribution to the functionSq .
In contrast, ifq.1, thenpi

q!pi and the contribution of rare
events is negligible.

It is well known that scaling behavior is proper to syste
which present fractality. Especially in monofractals only o
level of scaling is detected while in multifractal structur
the different scales grow with different power laws. TheSq
entropy is then the appropriate measure of complexity
cause it addresses the complexity in different length sc
by appropriate tuning of theq value.

IV. RESULTS: THE q VALUES OF ENTROPY

In the current study we explore the behavior ofSq on the
LLV starting with different initial configurations. Dependin
01612
s

-
es

on the degree of organization of the initial state, the entro
may increase going to a more disordered state or decr
going to a more ordered state.

To calculate the entropy production rate at the ‘‘nucle
growth mode,’’ we start with a fully organized state consi
ing only of particlesSand we include a nucleation droplet o
infinitesimal radiusr placed on the lattice. The droplet con
tains particlesX1 , X2, andS homogeneously and randoml
distributed within the droplet area. As time increases
droplet grows forming spontaneously several rings of p
ticles X1 , X2, and S sequentially@30#. The widths of the
rings shrink with the distance from the pureS region and
when their width becomes zero the typical LLV fractal pa
tern appears in the middle as can be seen in Fig. 3~a!. This
type of spreading is called the ‘‘nucleus growth mode’’ b
0-5
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TSEKOURAS, PROVATA, AND TSALLIS PHYSICAL REVIEW E69, 016120 ~2004!
cause an initially small droplet grows in size and finally co
ers the entire system. This two-dimensional (d52) growth
leads to a reorganization of the species which at the be
ning were randomly distributed within the infinitesimal dro
let, while they eventually present fractal patterns as in F
2~a!. As time increases this typical pattern will cover th
entire lattice.

As seen in Fig. 3~b!, only the caseq50.5 shows alinear
increase with time during the entropy production duratio
behavior is sublinear forq.0.5 and superlinear forq,0.5.
In Fig. 3~c! we seeS0.5 for various system sizes. They a
start linearly, coincide during the entropy production perio
and saturate at different values. Theq value does not chang
with variations of the lattice sizeL, of the window sizel, of
the initial concentrations of reactants within the origin
droplet, and of the values of the kinetic constan
(k1 , k2 , k3), unless the constant values or initial states dr
the system to trivial states. If we inspect closely theL
5500 steady state of Fig. 3~b!, the entropy lines fort.150
present small fluctuations. An interesting data collapse
shown in Fig. 3~d!.

In Fig. 4 the entropy of the LLV model, at the ‘‘strip
growth mode’’ is shown. This is a one-dimensional grow
(d51) mode. The initial state of the system consists o
stripe of randomly distributedX1 , X2, andS embedded in a
lattice containing onlyS particles otherwise@Fig. 4~a!#. The
entropy features at this mode are similar to the nucl
o,
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growth mode but now onlyq50 produces the linear behav
ior @Fig. 4~b!#, henceq depends ond. Figure 4~c! shows the
dependence ofS0 on the lattice sizeL, while the correspond-
ing data collapse is presented in Fig. 4~d!.

V. CONCLUSIONS

In the current study the nonextensive entropic proper
of the LLV model are examined. The special value ofq
which produces a linear increase ofSq(t) depends on the
dimensionalityd of the growth:q5121/d (d51,2). These
nontrivial values ofq might be consistent with the appea
ance of fractal spatial structures observed in earlier stu
for the same system; however, further studies are never
less necessary to clear out this point. Also, one expecq
51 in thed→` limit @33#. Further studies~e.g., sensitivity
to the initial conditions, multifractal functionf (a), entropy
relaxation, and aging! are welcome.
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